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ABSTRACT

‘;_‘jZ)The theory of torsional vibrations of a circular, hollow cylinder
with a piecewise constant periodic variation of rigidity modulus and
mass density is developed in terms of Floquet waves, The dispersion
spectrum is shown to have band structure, and the arrangement of
characteristic sequence at the end-points of the Brillouin zone is

studied. The problem of co-existence of periodic solution is examined

in detail and the regions of stability and lability are charted.
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1. INTRODUCTION AND GOVERNING EQUATIONS

Consider an infinite, circular, hollow cylinder with inner
radius b , outer radius a and thickness 2h = a-b, a > b, b 3 0,
In cylindrical coordinates (r,8,z), the domain R of the hollow,
homogeneous cylinder is defined as R : RIXR2 , where R1 ¢t b<rc<a,
Ry : [z <= and 0 <6 <2r. In the longitudinal z-direction the
domain R2 is the union of denumerable infinite number of cells Rd

with identical properties, so that R2 : U Rd . Each cell Rd con-

sists of the union of two layers Rk and RE with z-domains

R2 t 0 <z < g and Ri : L <z<d, where d = (£ + %) is the lattice
distance of a unit cell, We assume that the material properties of the
elastic layer Rg are the modulus of rigidity u and mass density o ,
and the corresponding material properties of the elastic layer RE are
specified by the parameters p and p , respectively. We thus assume
that each cell consists of two layers of lengths £ and ¥ , and
material properties (u,p) and (E,E) , with the additional assumptions
w/e >0, ;/5 >0 and u/ﬁ > 0 . We also assume that an infinite
number of these unit cells are bonded together at their common interfaces
|z| = nd , n= 0,1,2,,.. so that the domain R defines an infinite,
circular, hollow, layered cylinder with periodic structure of material
constants, with real period d .

For time-harmonic torsional waves with angular frequency w , the

displacement components (ur' “z) = 0 , and the non-trivial tangential

g =

component of displacement u u satisfies in an open domain R the

boundary eigenvalue problem

i e i i O+ sk &
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where for a homogeneous, hollow cylinder R: b <r<a, |z| <=,

(n/2h)c 1is the

mn

Q = w/ws is the non-dimensional frequency, wg
lowest thickness-shear frequency of an isotropic, homogenous, infinite

Y2

plate of half-thickness h , and c¢ = (u/p) is the speed of the
shear wave in an infinite, homogeneous, isotropic elastic medium with

shear modulus u and mass density p , [1].*

Using Bernoulli's method of separation of variables, we get the

separated equations

r 2
%;Lr-g—ﬂ+%[[;—;-r] -1]R=0, b<r<a

2
z" + [%H {] Z=

k2 = (Q2- £2)

|z] < = (2)

|
o
-

where we assumed the product solution to be the form u(r,z) = R(r)zZ(z),

and accents indicate differentiation with respect to coordinate z .

Since
T ., = ur a (u/r) (3)
rd or ’

it follows that the boundary conditions are

£ (R - 2R =0 on OR . %)

*
Numbers in brackets designate References at end of paper,
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In addition T =1 =0 and

ou
Tzo T Moz (5)
Now the structured, hollow cylinder consists of an infinite
number of unit cells, and in the case under discussion, each cell con-
sists of two layers. Therefore, for the two layers in each cell, the

governing equations are

2
z"+[ﬂ_5JZ=°. 2= (22-k2) , 0<z<2
(6)

-2 -
"+ [1— ] Z=0, £E2=((y®)%-«?) ,2<z<d

where £ and % are the longitudinal wave numbers in the layers of
thickness & and 2 , respectively, and v2 = (u/p)(p/¥). Because
the cylinder is of periodic structure with period d , these equations
hold from cell to cell. The wave numbers £ and £ have therefore to
be extended as periodic functions of period d , where y 1is a piece-
wise constant. Therefore, in principle, we have a second order differ-
ential equation with piecewise constant periodic coefficient,

The general theory of differential equations with periodic coeffi-
cients is due to Floquet [2], and an account of the theory can be found
in books: Imnce [3], Stoker [4], and Strutt [5]. 1In quantum-mechanical
problems use of Floquet's theory was first made by Kronig and Penney [6],
and subsequently reviewed in his book by Brillouin [7]. More recently,
Kaul and Herrmann (8], and Delph et al [9,10] have made use of Brillouin's
procedure in solving some of the important wave propagation problems in

periodically structured elastic solid.




However, when the periodic coefficients are plecewise constant,
Brillouin's method is unnecessarily long and arduous. Meissner has
shown that when the coefficients are piecewise constant, an exact solu-
tion can be easily obtained in terms of elementary functiomns, [1l].

An excellent review of Meissner equation and its various properties is

. SEPY I

3

contained in a recent paper by Hochstadt, [12]. The chief advantage of
S the method is that the size of the characteristic determinant depends
) only on the order of the differential equation and is independent of
the number of layers in the unit cell. Thus in the present problem,

where we are dealing with a second order system, the order of the

& .

{

characteristic determinant is 2x2, irrespective of whether there are
two or more layers in the cell. r

The purpose of this paper is therefore twofold, 1) to illustrate

B Y Paty TREY'N

$ use of Meissner's method, and ii) to study in greater detail the [
problem of torsional waves in a hollow, structured cylinder. In addi-
' tion to the discussion of dispersion spectrum, we also study the typical
. Lyapunov-Haupt arrangement of the characteristic sequence [13,14], the
problem of co-existence of periodic solutions, and the regions of
stability and lability. Certain critical cases and properties of band-

spectrum are not discussed, and can be found in an earlier report [15].
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H . ' 2. SOLUTION R(r) 1IN THE RADIAL DIRECTION
To find the radial eigenfunctions R (r) , we first solve the :
. . boundary eigenvalue problem
f ) 1
g |
-\""‘ 9__ _C_i_li }'. 2,2 = =
.‘W dr[rdr}-i-r(sr 1HR=0, B = (mk/2h), b<r<a,a>h 1
: (1) :
d = = = {
! dr(rR) 2R = 0 on r=a and r=b . {
+
B
;
M ;
; This is obviously a self-adjoint, singular boundary value problem with
i 82 3 0 and real, and the eigenfunctions are orthogonal with respect é
: . to weight r . The general solution is

2
R(r) = A 5 J,(Br) - 3 BY, (6r) , 82 2 0 ()

where A and B are two arbitrary constants., Since the Wronskian

rW[Jl(Br), Yl(Br)] = 2/%(#0), it follows that the solution is valid
for all admissible values of separation constant B8 . In particular,

when B = 0 , we get from eqn. (2)

R(r) = Ar + B/r , B =0, 3

The two coefficients A and B are so chosen that the shear

stress T vanishes on both boundaries ©8R : r = a and r = b.

ré
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Using the general solution R(r) in the boundary condition (1)2 .
and setting the determinant of the coefficients A and B equal to

zero, we get the eigenvalue equation

P, = [J,(Ba)Y,(Bb) - J,(Bb)Y,(Ba)] =0 , (4)
and the amplitude coefficient is given by

B: A= 4J2(Ba) : HBZYZ(Ba) . (5)

Since the boundary value problem is self-adjoint , the eigenvalue
equation (4) has simple roots, which are all real and discrete and can
be arranged in an increasing order

0=p2<pl<plcesecpl <plcen. no e,
Corresponding to every eigenvalue there is an eigenfunction and these
eigenfunctions form a complete set, which are mutually orthogonal with
respect to weight r . For every eigenvalue Bn we can find Bn in
terms of An » and therefore the radial eigenfunction Rn(r) can be
written in the form

R(r) = grcaay [Y,(B)J (BT) = 3,(82)Y,(80)] , B2 3 0 6)

BY, (Ba
where the suffix n = 0,1,2,... belonging to R(r), A and B has
been suppressed for brevity. For Bo = 0 , the eigenfunction Ro(r)

takes the simple form
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Ro(r) = Aor . @)

and represents a pure torsional mode.
These eigenfunctions can be easily normalized, if we make use of
the algebraic property that the product of two cylinder functions

Cl(r) and Dl(r) can be written as

26C, ()b (r) = g;[rz(cl(r)Dl(r) +C_()D_ (1))
—r(Co(r)Dl(r) + Cl(r)Do(r))] . (8)

Making use of the normalizing condition

a
J rR?(r)dr = 1 ,
b
and the algebraic identity just mentioned, we find that corresponding

to the eigenfunction R(r) , the normalized coefficient A in eqn. (6)

is given by
8Y, (Ra)
A=y e, 9)
a
C(r{]
b
where

C(r) = 3 r2[¥4(Ba){J2 () - J_(8r)J,(B)} +
JZ(8a){Y3(Br) - Y (Br)Y,(Br)) - (10)

3,(88)Y, (Ba) {23, (B)Y, (Br) = J_(BT)Y,(Br) = ¥ (¢1)J,(Br)}].
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The normalized set of ortlogonal eigenfunctions are thus given by

;‘A)(:a) I"- Jq(Ba) )
r —= = - = Y_(£1) 3< 2 0.
R(z) = ====7 13 9109 - 7 (gay Wi r’} ' B7 20
4/ C\r) '
-b
In particular, in the limiting casce when 5 = 0, we have a pure
torsional mode
R () = S a>b (12)
vat=b"

In the case of a solid cylliader b = 0 , Sr are the simple roots
of the eigenvalue equation J,(:a; = 0 , and the normalized set of
orthogonal eigenfunctions take the simple form

A

R(r) = ;Z Jl(ﬁr)/Ji(Ba) , 82 3 0
(33
Ro(r) = 2r/fa® | 32 = ¢ .
If we write b/a = t , then
3a 2 ko= e 4b T oL = e
» (1-t) » (1-2)
and the eigenvalue equation (&) taxkes the iovi
Jz(E)YZ(LE) - Jz(:E)YZ(Z} S U (14)

For t < 1, the asymptotic uxpunsion f{or tlwe p-tii root of this trans-

ceridental cquation is given by tiie dMcMaion scries [16]
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K 2 p[l + 30tq?{1- 3q2(1 + 11t + t2)
- 18q%(11 - 9t - 109t2 - 9¢3 + 11t%) + ...}) , (15)
where
q = %;%’ . p=1,2,3,... (16)

Evidently, the lowest root of eqn. (14) is Ky = 0 . The higher roots
of this equation are given with sufficient accuracy by the asymptotic

formula (15). For ¢t = 2/3 , the first three roots are «, = 1.030 4056,

1
Ky = 2.015 6684 , Ky = 3.0610 5057, For p > 3 the higher roots become

increasingly accurate, For t = 1/3, «, = 2,115 5496, «x, = 3,081 0800,

2

3

= 4.061 9010, etc,
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3. DISPLACEMENT FIELD Z(z) IN ONE CELL

The domain of a typical cell Rl x Rd is the union of two layers

Rl X RQ and Rl X RE with an interface RQ(W RI . The displacement

components Z(z) € R and Z(z) € RE are governed by the ordinary

L

differential equations (1.6)

Z"(z) + aZ(z) = 0 , Vz € R, Ryt 0<z<y
(1)
Z"(z) + o%Z(z) = 0 , vz € Ry, Rpi L <z <d,
d= (2 + %)
where
i - ™ -

Q—'z'ﬁg, a_—ZTIE >

£2 = (22 - «?) , B2 = ((y)? - kY, (2)
y2 = (¢/0)? , 2 =ulp , < =ulp .

The continuity of displacement wu(r,z) and shear #i-c¢ss e

at the interface RQ(W RI requires that the functions Z(z) and Z(z)

must satisfy the continuity conditions

Z(2) = Z(2) ,
— 3
pe'(2) = w2'(2) ,

where accent denotes differentiation with respect to the coordinate 2z .
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We assume the general solution of the differential equation

(1) in che fomm

2(z) = A cosaz + B % sinaz a2 3 0 . z 6 R2
(4)
Z(z) = A cosaz + B é-sinaz . a2 3 0 . z 6 RE .
The two linearly independent solutions
w, (z) = cosaz w,(z) = l-sinaz (5)
1 ’ 2 T a
satisfy the initial conditions
wl(o) =1 , wi(o) =0 , wz(o) =0 , wé(o) =1 (6)

and therefore the Wronskian W[wl(z) , wz(z)] =1 . This establishes
the linear independence for «? 3 0 ., Similarly it follows that cosaz
and (sinaz)/a are also linearly independent for a? 2 0.

Using the continuity equation (3) at the interface z = £ , we

can determine the coefficients A and B in terms of the cocfficients

A and B ., These coefficients are

>1

= A(CT + X% g3) + B(sT - 22 5y
uge o Ha

(7)

oY X--1]

- A(CS - ¥2 5Ty + B(s5 4+ B2 Ty
o Ha

—-pr s




——

12

where

sina , S = sinaf (8)

C = cosaf , C = cosaf s S

t

and the coefficients A and B are still to be determined.
Having determined the coefficients A and B , the general solution

in the fundamental cell RQLJ R.Jz in terms of the coefficients A and

_ B takes the form
; Z(z) = Awl(z) + Bw,(z) 220, ze€ R,
. & (9)
5 4'-‘ _ _ - _
* Z(z) = A, (2) + Bw,(2) , a2 20, =z6€ Ry
¢ where now
¢
w. (z) = cosaz w,(z) = l-sinaz
1 ’ 2 T o ’
= - - ua T
wl(z) = C cosa(z - &) - bt S sina(z - 2) , (10) ;
- 1 - u -
wz(z) = = 5 cosa(z - &) + &= C sina(z - &) ,
a na
and the respective Wronskians are
Wwy,wyl =1, W[Gl,v}z] = u/u . (11)

In order that ;l and 52 be always linearly independent, their corres-

e b a s

ponding Wronskian must be non-zero. This requires that 0 < ulp .
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It can be easily verified that at the interface 2z

£ of the two

layers in a primitive cell

wi(R) = w (), w, (2)

Gz(i)

(12)

Wi (R) = wwi(e) ,  wwp(e) = wij (L)

and therefore the general solution (9) satisfies the continuity condi-
tions (3).

It may be finally remarked that this process can be easily general-
ized if there are more than two layers in a primitive cell. Such an

extension to three and four layered composite is contained in Meissner's

paper, [11].
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4, QUASI-PERIODIC SOLUTIONS IN A CYLINDER

WITH PERIODIC STRUCTURE

In the case of a cylinder with periodic structure with period d ,

we require that at the common interface between two adjacent cells, the

-
. displacement and stress be continuous and at least quasi-periodic. The
. conditions of continuity at the cell interface z = d are
1
& a(r,d)) = u(r,d) ,
i - - + 1)
? Tze(r,d ) = Tze(r,d ) .
s
«
Quasi-periodicity from cell to cell requires that
u(r,z+d) = ou(r,z) ,
0<z<2? (2)l
Tze(r,z+d) = orze(r,z) s
u(r,z+d) = ou(r,z) ,
_ L <z<d (2)2
Tze(r,z+d) = orze(r,z) ,

where o is a suitable constant to be determined, [3], Combining the

continuity and the quasi-periodic conditions we find that at the cell

interface the appropriate continuity conditions are

u(r,d ) = cu(r,0+) . .
(3) L

- - +
Tze(r,d ) = c1ze(r,0 ) .
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In each lamina of the unit cell, the tangential component of the

displacement can be expressed in the product form

u(r,z) = R(r)Z(z) , u(r,z) = R(r)z2(z) (4)

where the eigenfunctions R(r), Z(z) and Z(z) are defined by equations

(2.11) and (3.9), respectively. The continuity conditions (3) at a

typical cell interface therefore take the simple form

Z(d") oz(oh) ,

(5)

==y +
uZ'(d ) ouZ'(0) .
The functions Z and Z contain two arbitrary constants A and
B which can now be determined if we make use of the continuitv equation
(5). Substituting the functions Z and Z in these two equations, we

get a pair of linear homogeneous equations

v, (d)-o W, (d) A .
- =0 . (6)
ﬁﬁi(d) uwé(d)-cu B

Existence of a non-trivial solution for a system of homogeneous equations

requires that the determinant of the coefficients A and B must vanish.

This gives us the characteristic o-equation

g? - o[v-vl(d) + -::— ;‘z(d)] +1=0, (7

Note that the 2x2- form of the determinant remains unchanged if there
are more than two layers in a primitive cell,

I .

PULE PR N

G, .




!
A e B

. A

where we have used the fact that w[;l(d), Gz(d)] = u/u . In addition,

for each value of the constant o , the amplitude ratio is given by
‘R = w Y = ot vy
A:B wz(d).[c wi(d)] = [ou uwz(d)].uwl(d)- (8)

Assuming o # 0, we can rewrite the characteristic equation (7)

as
1
0+;=H , €))
where
Hzw(d)+Lwd . (10)
1 u 2

It easily follows that

2
o+ =n+2,
| vo!
(11)
Y2
Yo - A7 . H=-2,
. /EJ
and therefore
6 - % = /(H-2) (H2) . (12)
If 9 and o, are two roots of the eqn. (7), then it is obvious that
0,0, = 1 and (01 + 02) = H . FEvidently 0, %0 and 9, = 1/o are the

two roots and are explicitly given by
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=%[u:m‘>?7] , (13)
= 1/o

We now distinguish three cases:

i) [H| <2 . 1f [H| <2, then from (13) it follows that o, and o,
are complex conjugate and of absolute value unity. In this case all

solutions are bounded since quasi-periodicity from cell to cell requires

that after n cells
2(z + nd) = GnZ(z), Z(z + nd) = onz(z) (14)

where now ‘o‘ =1. i

1) || > 2 . If |H|[ » 2, then from (13) it follows that « ¥ o,

and the two roots are real. Since =1 , it implies that if one

0,0
172
root is greater than unity then the other must be less than unity in

absolute value. Thus as the number of cells n - « , one of the solutions

will become unbounded and the other will decay to zero.

iii) H=+* 2, If H=+* 2, then 0 =0y =0 is a root of multiplicity i

2. Ssince 00, =1, it follows that 0° = 1 and therefore either o =+ 1

or o = -1, each being a double root, When o =1 for H =2, the

solution is periodic with period d , since in this case Z(z + d) = Z(z).
When o = -1 for H = - 2, the solution is periodic with period 24 ,
because in this case 2(z + 2d) = (-1)2 Z(z) = Z(z) . In the case of
double roots only one solution is basically periodic, the second linearly ;

independent solution is in general aperiodic, [ B]T

+ This is reminiscent of a similar situation in the theory of ordinary
differential equations, when the indicial equation has roots ot higher
multiplicity.
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The characteristic equation (7), or equivalently eqn. (11) takes

a familiar form if we introduce the transformation

o = exp2i(t + X , (i¢ = - 1) (15)
where
e - _ R
T:z‘ﬁ, T:'m (16)

and ) 1is a characteristic exponent (also known as Floquet's exponent),
which determines the phase shift.  In the transformation (1), *  is
congruent modulo /(1 + 7). For a piven u , the value of A  Is deter-
mined uniquely in the interval T[21:(0 , =/(t + 1)]. Having deter-

mined A in the interval 1I[)A] , all other values of ) are congruent

to it modulo 7/(1 + T).
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5. THE CHARACTERISTIC A-EQUATION

In terms of the characteristic exponent ) , the two characteris-
tic equations (A.ll)2 1 can be written in the useful form
’

sin? (1 + T)A = %(2 -H)

_ 1 (1)
cos?(1 + T)X = 2(2 + H) .

The function H 1is defined in terms of ;l(d) and Qé(d) which can
be easily obtained from Gl(z), ;2(2)' which are given by (3.10). After
some algebraic simplification it can be shown that the two characteristic

equations (1), take the interesting product form

sin? (141)A = {C(rg)sGEH ﬁg suocGE)}{cua)sGEw -§—§— S(rm(?E)} ,
(2)
cos2(1+1) ) = {cm)c(??,)— -ﬁ—g sus)é(??;)}{cuz)c(?b- -5% S(re;)sGZ)} .

where S and C are abbreviations for trigonometric sine and cosine
functions, respectively, We may now note that the two trigonometric
functions sin?(1+7)2 and cos?(1+1)} , are even-functions about A = O
and A =n/[2(1+1)] . In addition, A is congruent modulo n/(1+1) . It
is therefore sufficient to restrict Floquet's wave number * to the
interval IB[A] : [0,7/2(1+1)] . With this restriction on the value of
A , the frequency spectrum § versus X} has a zone structure, and in

the first Brillouin zone I_,)X varies from 0 to ﬁ/[XT+;)], (713 .

B’
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The characteristic roots § of this characteristic equation can
be arranged in an increasing order and thus can be indexed by a suffix n,
It can be shown graphically that the order follows the well-known
Lyapunov-Haupt sequence, [13,14). 1In particular, it can be exhibited

explicitly at the end-points of the Brillouin zone, X = 0 and

Of particular interest is the case when H = * 2, that is, when
c=%*1, When 0=1, % =nn/(t+1) , n = 0,1,2,... and in the reduced

zone scheme 1A = 0 corresponds to the left end-point of the interval

i

IB . Since 0 = 1 is a zero of multiplicity 2 , out of the two linearly
independent solutions only one is periodic with period d ; the second
solution is aperiodic. Corresponding to the periodic solutions with

period d , the characteristic equation (2)1 uncouples into two equations

1) tan?z + %%—tanrﬁ =0,
o=1, H=2 3)
2 T + 45 =0.
) tantg :f tantg = 0

When o = -1, A =(n+l/2)n/(t+1), n = 0,1,2,... and in the reduced
zone scheme X =un/2(t+t) corresponds to the right end-point of the
interval IB + Since o = -1 1is a zero of multiplicity 2, only one
linearly independent solution is periodic with period 2d. Corresponding
to the periodic solution with period 2d, the characteristic equation (2)2

uncouples into two equations

1) cotTf - 14 tantg

uE =0,
c=-1, H=-2 4
~ ——_P_é -
2) cottg =7 tant§ = 0

LA ek
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One can easily see that the multiplicity of the root o =1, corres~

ponds to the multiplicity of the root X = nn/(1+17) , and multiplicity

of the root o = -1 corresponds to the multiplicity of the root

A =(n+1/2)n/(1+7) . This follows from the fact that in the first case
sin2(1+?)A and its first derivative, both vanish at the left end-point
of the Brillouin zone. In the second case cos?(1+7)X and its first
derivative, both vanish at the right end-point of the Brillouin zone.

If Z(z) 1is a solution then Z(-z) 1is also a solution because

the differential equation is invariant under coordinate reflection.

These two solutions are in general linearly independent, unless Z(z)

is an even or an odd solution. However, we have shown the existence

of periodic solutions for o =t 1 . Therefore, either Z2(z) 1is a
periodic solution or it is not. If Z(z) 1is a periodic solution then

it is either even or odd. 1If it is not even or odd then we can construct
the solutions [Z(z) + Z(~z)] and [Z(z) - Z(-z)] which are even-periodic
and odd-periodic, respectively. In either case, even-periodic and
odd-periodic solutions can always be determined, when periodic solutions
exist. Thus at the left (right) end-point of the Brillouin zone, even-
and odd-periodic solutions with period d(2d) can alwayvs be determined.

The dispersion spectra on an extended zone scheme are shown in Fig. (1)

for Ko = 0 , and in Fig. (2) for Ky = 1.18920. The material parameters
are t =1/3, y=1/4, u/u =140, pl/e =5/2 and T/t = 5. Real seg-
ments of the spectra are shown as full lines, imaginary segments are shown
as dotted lines. In Fig, (2), point A corresponds to the limiting case

£ =0, and point B to the limiting case when E =0 . In these figures,

hatched regions represent stopping bands.
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6. CHARACTERISTIC A-EQUATION FOR Ky = 0

In the case of pure torsional mode Bo = 0 and this implies

- Ko = 0, £ =19, £ = y0 . The characteristic equations (5.2) now take
. a simple form
-
i
- sin? (+7)A = {C(m)s(y¥sz)+ Els(m)c(y?sz)}{c(m)s(y¥n)+ %?s(n‘z)c(y%sz)} ,
‘ (1)
? cos2 (t+1)A = {C(TQ)C(Y¥Q)- ﬁXS(TQ)S(Y;Q)}{C(TQ)C(Y;Q)— %;S(TQ)S(Y?Q) .
:
z At the end-points of the Brillouin zone, for ¢ = 1 the charac-
teristic equations are
1) tanytQ + %E—tantﬂ =0,
=1, H=2 (2)
= U
2 tanytl + —= tani = 0
) Yt "y T s

and for o = -1, the characteristic equations are

i) cotyt{l - %E tantQ = 0
i) cotytq - LI tantq = 0
Yi
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7. LYAPUNOV-HAUPT SEQUENCE

We now demonstrate graphically that at the end-points of the
Brillouin zone the characteristic values of A can be arranged in a
Lyapunov-Haupt sequence,[13,14]. This is an interesting and an important
property of differential equations with periodic coefficients, and in
this relatively simple case it can be demonstrated explicitly. We first

consider the case of pure torsional mode, corresponding to «_ =0 ,

m

Let yu/u =T, yi/t =T and 18

can be written as

1 Tx = kn - tan 'T' tanx ’
o))
2) Tx = krm - tan—l%-tanx s
and for o = -1, eqn. (6.3) takes the form
1) 1% = Q+1)7/2 - tan 'T tanx ,
(2)
4 _ -11
2) Tx = (2k+1)7/2 - tan T tanx ,
where in these equations k = 0,1,2,... .
First consider the muylti-valued function
f(x) = kr - tan 'Ttanx , k=0,1,2,... (3)

X, Then for ¢ =1, eqn. (6.2)
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for a fixed value of parameter I’ . The slope of the function is
£'(x) = - I'/(cos?x + I'?sin?x) , (4)
and its curvature is
‘~ £ = 1(r¢ - 1) (cos?x +S§2§?n2x)2 : (3)

Since T > 0, the slope is always negative and reaches a value -I for

x = 0,m,2M,..., and a value of -1/ for x = n/2,31/2,571/2,... .
% For T =1, the curvature is zero. For T # 1, the curvature is zero
% when x = 0,n/2,71,3%/2,... . When T = 1, f(x) = kn-x, and represents
a straight line with slope -1 and zero curvature, Further f(x) = kn
for x = 0,m1,2n,... and for x = 7/2,31/2,57/2,..., £(x) = (k- %)n .
For other values of x , the function can be readily computed and the
spectral lines are shown in Fig. (3), marked 1 ., We can similarly

analyze the function

f(x) = kn - tan_l%-tanx,
A and the spectral lines are shown in Fig. ( 3), marked 2. The points of
intersection of the set of these two family of curves with the
straight line with slope T locates the zeros of the two characteristic

equations (6.2) It is obvious from the figure that the zeros of

1,2°
these two characteristic equations, which correspond to periodic solutions

with period d , form a sub-sequence

i |
et il s
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0= Qo < Ql < Qz < Q3 < 94 < QS < 96 < eee (6)
We can similarly plot the two functions f(x) corresponding to
the case v = -1 ., 1In Fig. (3), these curves are marked i and 2.

The intersection of these curves with the straight line with slope T ,

locates the zeros of the two characteristic equations (6.3) If

1,2°
i represents an element of this sequence, then it is obvious from the

figure that the elements can be ordered in a sub-sequence
< < ... @)
Combining the two sub-sequences, we have the Lyapunov-Haupt sequence

< aee (8)

It may be remarked that such a sequence is a characteristic of a wide
class of problems governed by differential -quations with periodic
coefficients,

We now consider the general case for the radial eigenvalue «¢ > Q.
In this case the characteristic eigenvalues at the end-points of the

Brillouin zone, for o = +1 and o = -1 are given by

1) ?E = kn - tan ! %é-tanTE R

J
1 uég

2) ;E = km - tan Ef-tanré ;
_— 9
7 = I -1 pg
) 1€ = (2k+l)2 tan ot tant§ ,
2) Tt (2k+l)2 tan oF tantg .
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Consider the first of the four equatioms (9)1-
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In the notation

defined earlier, this equation can be rewritten as

Tsz-(K'r;Wz = kn + fl(x) ,

where the function fl(x) is defined as

1]

fl(X) x%=(k1)?2

x2- (k1)

=0, x = V(k1) 2+ 72
=0, x = V (k1) 2+ 4n2

-i tanh™! FKTV(I/Y)Z-l] , x

]

(k1) 4=%

[}

-i t:anh-l g-tanhxr] , X =

-i tanh-l[r-iﬁzlllzz§i— tanvx2-(x1)?2 ,

(e1/v)2-x2
-i tanh”'|T .iﬁlil%_:%;_ tanh/(k1)2-x2

(10)

_tan-l[r‘/.}_(;:_(ﬁ./y—)z— tan,/xz_(KT)Z J’ X > KT/Y

x = k1/Yy

KT < X < k1/Y

=x1t , Yy <1

0 < x < kTt

For t = b/a = 1/3 , the first radial eigenvalue is «x. = 1.18920., For

1

the purpose of numerical computations we select as before

n/u =40, o/p =5/2,

2/a = 3/5,

2/a =3,
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which leads to

y=1/4, T =10, 1 =91/20, 7T =09n/4, T =25/4 ,

as the values of the parameters. We now plot the function kn + fl(x) .
for k =0,1,2,... . The points of intersection of these curves with
the parabola T/xz-(KT/Y)2 » locate the zero of the characteristic equa-
tion (9)1- In Fig. (4), the parabola and the spectral lines are drawn
for x z kt/y , and the spectral lines corresponding to the character-
istic equation (9)l are marked 1 . The spectral lines for the second
characteristic equation are also shown in the same figure, and marked 2.
It is obvious from the figure that the zeros of the two characteristic
equations, when arranged in an increasing order, form a subsequence,
which is similar to the case Ky = 0 . The second system of character-
istic equations are plotted similarly and are shown in the same figure.
These spectral lines are marked i and 2 » respectively. Again it is
abvious from the figure that corresponding to the zeros & , there again
exists a sub-sequence, similar to the case Ky = 0 . Combining the two
subsequences, we find that the zeros of these four equations, when

arranged in an ascending order, form the Lyapunov-Haupt sequence.
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8. CO-EXISTENCE OF PERIODIC SOLUTIONS

To study the problem of co-existence of periodic solutions, we

first consider the case of pure torsional mode when Ko = 0. For o0=1,

the two characteristic equations are

I' sinx cosTx + cosx sinTx

\
(s
-

(1)

' cosx sinTx + sinx cosTx

1]
(@]
.

Consider first the case when T

n

1 . In Fig. (3), the spectral lines
corresponding to I = 1 are straight lines with slope -1. The points

of intersection of these lines with a line of slope T are all roots of
multiplicity 2. This also follows from the fact that when T = 1 , these
two equations are equivalent to one equation cos2(1+T)x = 1 , whose
zeros are given by X, = nn /(1+T)

s, n=20,1,2,..,. . These are zeros

of multiplicity 2, because the derivative sin2(l+T)xn 2 0. Tuus,

when o l and T =1, we arrive at the {-subsequence

0=0 <Q =0, <Q, =0, <Qq. =9 <

Similarly when o = -1 , the two characteristic equations are

I' sinx sinTx - cosx cosTx

"
[=]

(2)

' cosx cosTx - sinx sinTx

]
[«
L]

e e e ™ . PN
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When [ = 1 , these two equations are
c0s2(1+T)x = -1 , whose zeros are X,

Again these are zeros of multiplicity

equivalent to one equation

= (ntl/2)7/(14T) , n = 0,1,2,... .

2, because the derivative

sin2(1+T)xn = 0 . Thus in this case we arrive at the {~subsequence

We now consider the case when T # 1,

(3)

- X

29

Lyapunov-Haupt sequence

=1, To find the zeros

of multiplicity 2, we

can be written in the

consider the product of eqmns, (l)1 and (1)2, which

form

2
[Vﬁ'— :ﬁj sin2x sin2Tx - 2[cos2(1+T)x-1] = 0 . (4)
r

The first derivative of this equation is

2
[/F'- ’EJ [cos2x sin2Tx + Tsin2x cos2Tx] + 2(1+T)sin2(1+T)x = 0.
YT
(5)

Evidently, these two equations will be satisfied if x and T are so

chosen that

sin2x = 0 , sin2Tx = 0 , and cos2(1+T)x =1 . (6)
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The roots x, SO determined, are roots of multiplicity 2 and are given

by

x =qV2, T = p/q

7
(g+p) = 2n, q,p,n = 0,1,2,3,...

We thus see that there exist multiple roots only when T is a rational
number. For rational values of T , a line with this slope will pass
through the intersection points of the spectral lines corresponding to
the two equations (1). The coordinates of the intersection points are
(q g-, p %) , where at each intersection point (q+p) = 2n . These
intersection points are clearly shown in Fig. (3), and all those
intersection points which lie on the line passing through the origin
with slope T = p/q , are zeros of multiplicity 2, Thus if (q 7/2,

p 7/2) where (g+p) = 2n be the coordinates of the first zero of mul-
tiplicity 2 on the line T = p/q , then the coordinates of higher zeros
on this line are m(q ©/2, p n/2) , where m(q+p) = 2n. As a typical

case, the Q-subsequence for T = 3/1 is given by

0 = Qo < Ql < 92 < 93 = 94 < QS < 96 < 97 = 98 < Qg < ves (8)

We now consider the second case when T # 1 and o=-1, It
can similarly be shown that corresponding to equation (2), there exist

double roots if x and T are so chosen that they satisfy the equations

sin2x = 0 , $in2Tx = 0, and «cos2(1+T)x = -1 , (10)
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In this case, we have roots of multiplicity 2 when

x, =aqn/2 , T = p/q (11)

(q+p) = 2n+l, q,psn = 0,1,2,3,...

The coordinates of the intersection point of the family of curves corres-
ponding to equation (2) are (q w/2, p 1/2) where (q+p) = 2n+l . Those
intersection points which lie on the line with slope T = p/q , have

the coordinates m(q n/2, p ©/2) , where m(q+p)

2n+l . As a typical

case, the Q-subsequence for T = 2/1 is

Qp < Q) < Q= 0, < Qg < @ < §y < Qg <@g = 8,5 < .oe (12)
Combining the two results, the Lyapunov-Haupt sequence for a typical

value of T = p/q can now be easily constructed. Choosing T = 3/1 ,

the sequence is

g < 0y < G, < Qo = 0y < eas  (13)

Now consider the intersection of the line with slope T = p/q ,
with the spectral lines corresponding to ¢ = *1 . At each intersection

point there exists at least one periodic solution, of peried d or 2d

1

depending upon o = +1, or -1 , respectively. When the line with slope

T = p/q intersects a lattice-point with coordinates (q n/2, p n/2) ,

scabioidan
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two periodic solutions, both of period d or of period 2d , co-exist,
This is called co-existence,implying existence of 2 periodic solutions
of the same period, or coincidence, implying existence of eigenvalues
of double multiplicity. Naturally, coincidence of frequencies implies
co-existence of periodic solutions, and conversely.

We now consider the problem of co-existence of periodic solutions
when the radial eigenvalue k2 > 0 . The theory tells us that when
o = #1 , there exists, in general, one periodic solution corresponding
to every simple eigenvalue of the characteristic equations (5.3,5.4). The
other linearly independent solution corresponding to the same eigenvalue
is, in general, aperiodic. The problem of co-existence of periodic
solutions requires the existence of non-simple eigenvalues of double
multiplicity. We therefore look for double roots of the characteris-
tic equation when k2 > 0 . When o =1, k2 > 0 » the characteristic

equation (5.3) has the equivalent form

2
[/K'- ZEJ sin2/xZ-(x1)2 sin2TvVx%=(k1/Y)2
A

- 2[%052(/%2:1KT)2 +Tvx“=(x1/Y) ) —%] =0, (14)

where

-
111

V(x2-(c1/v)2) /[ (x?=-(k1)?)

(15)

-3
1"

= yuly T:=vyt/t , X310 .

We consider the case when 1/y > 1 . Then equation (14) and its first

derivative will simultaneously be satisfied if x and T are so chosen
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that they satisfy the equations
sin2vxZ- (k)2 = 0 , sin21Vx’=(xk1/Y)2 = 0 ,
(16)
cos2 (Vx2=(k1)2 + T/x2=(x1/y)2) =1 .
= The roots of multiplicity 2 are therefore given by
=Y Y (k1) 2 = D - ‘
xq (q‘"/z (KT) » T /—2-(1_ :/) (QKT)‘ (17) ’
q YIS i
+ J
'? p+q=2n , q,p,n = 0,1,2,3,...
:
¢
- . We thus see that there exist roots xq of multiplicity 2 if, in general,

T 1is an appropriately chosen irrational number satisfying condition

(17)2. If for a given « , there exist an integer £ and parameters
y and 1 such that (1/y2-1)(2t/n)? = (q?-22)/k¢ , then T 1is a
rational periodic decimal number. If we assume that T is a suitably

chosen irrational number, then a parabolic curve TVRZ=(x1/y)e will

heiihans 20l

pass through a lattice-point (xq, pn/2) of the intersecting family of

spectral lines corresponding to the two characteristic functions (7.9)1 2"
’

This lattice-point (xq, pr/2), p+ q = 2n, is then a zero of multiplicity

2. Thus for vy = 1/4, 1t = 97/20 = 1,18920, x. = 2.556 6337 will

! 5
l ) be a zero of multiplicity 2 if we choose 1 in such a way that #
i T = p/2.795 981, where 5 + p = 2n., Similarly Xe = 3,047 355 will be ;
z a zero of multiplicity 2 for T = p/4.337916, where 6 + p = 2n. As an ;
ﬁ example, let q =6 and p = 2 so that 4,337 916T = 2, The parabola %
E

TVx2=(x1/y)2 now intersects the lattice-point (xb, n) , and examination

anadd - O N
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of Fig. (4 ) reveals that we have a subsequence which can be arranged in

an ascending order, except that one of the eigenvalue is of multipli-
city 2. The structure of this sequence is obvious from Fig. ( &4},

We now consider the case when a0 = -1 , k2 > 0

. It can similarly
be shown that corresponding to the characteristic equatton (5.4), there
exist double roots if x and T are so chosen that they satisfy the

equations

sin2vVx2=(x1)? = 0 ,  sin2TVx2-(x1/y)< =0 ,

(18)
cos2 (Vx?=(k1)2 + TVx2=(kt/y)?) = -1 .
In this case the roots of multiplicity 2 are given by
x, = @@/ (k0? T = e e
A= (-v?) (B
Y (19)

ptg=2n+1 , Psq,n = 0,1,2,3,...

The discussion concerning these roots of multiplicity 2, follows along
the same lines as in the previous case when o = +1, and therefore hardly
needs reiteration. However, we may repeat that existence of the double
roots implies co-existence of two periodic solutions, both of the same

period, d or 2d , whichever the case may be.

L as
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9. STABILITY

To study regions of lability and stability we now plot graphs show-
ing x versus T , for Ko © 0 and Ky = 1,18920 , which are shown in
Figs., (5) and (6) , respectively.

Solutions are called stable and bounded when lHl < 2 . For values
of x and T 1in the hatched regions in these figures, all solutions are
stable, and the hatched regions are regions of stability, Unhatched
regions are regions of lability where |H| > 2 , and the solutions are
unbounded. On the boundaries of hatched and unhatched regions, |H| = 2,
and therefore for a typical point (x,T) on the boundary, there exists
at least one periodic solution of period d , or 2d . At a point of
intersection, two such periodic solutions co-exist. These points of

intersection, correspond to similar intersection points in Figs. (3) and

(4). We note from the stability diagrams that there is one value of

T for which Ql = Qz , three values of T for which 93 = Qa » D values
of T for which @, = @ , etc... , no value of T for which ﬁl = ﬁz .
2 values of T for which §3 - ﬁa , & values of T for which QS = ﬁb .
etcetera.
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